The regulatory network controlling the proliferation-meiotic entry decision in the Caenorhabditis elegans germ line.

نویسندگان

  • Dave Hansen
  • Tim Schedl
چکیده

The germ line of sexually reproducing animals, at some point in development, consists of both proliferating and differentiating cells. Proliferation is needed to increase cell number, ensuring that a sufficient quantity of gametes is produced. Meiotic development is needed to produce gametes that can support embryogenesis, each with half the ploidy of the somatic cells. For the reproductive strategy of a given species, regulating the timing and number of gametes, and thus controlling the timing of differentiation and the extent of proliferation, is very important for reproductive fitness. Therefore, animals have evolved regulatory mechanisms that tightly control and balance the proliferation-initiation of meiotic development (meiotic entry) decision. Genetic analysis has identified signaling mechanisms involved in controlling this balance in some animals, including mice, Drosophila, and Caenorhabditis elegans. In this chapter, we present our understanding of the genetic hierarchy controlling the proliferation-meiotic entry decision in C. elegans. A core regulatory network controls the decision under all known conditions (developmental stage, sex, and growth temperature). It consists of a canonical Notch signaling pathway promoting proliferation by inhibiting two redundant mRNA regulatory pathways, the GLD-1 and GLD-2 pathways, which promote meiotic entry. Superimposed on the core network is a complex set of factors, some yet to be identified, and many with regulatory relationships still poorly understood, which control the activities of the GLD-1 and GLD-2 pathways and possibly parallel pathways. Some of the complexity arises from these regulators acting only under certain conditions. We also highlight major areas where we lack knowledge. For example, it is unknown if the entire population of proliferating cells are stem cells capable of self-renewal or if only a small portion are stem cells and the rest are transit amplifying cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteasomal regulation of the proliferation vs. meiotic entry decision in the Caenorhabditis elegans germ line.

Reproductive fitness in many animals relies upon a tight balance between the number of cells that proliferate in the germ line and the number of cells that enter meiosis and differentiate as gametes. In the Caenorhabditis elegans germ line, the GLP-1/Notch signaling pathway controls this balance between proliferation and meiotic entry. Here we describe the identification of the proteasome as an...

متن کامل

Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans.

The Caenorhabditis elegans germ line provides an exceptional model for analysis of the molecular controls governing stem cell maintenance, the cell cycle transition from mitosis to meiosis, and the choice of sexual identity-sperm or oocyte. Germline stem cells are maintained in an undifferentiated state within a well-defined niche formed by a single somatic cell, the distal tip cell (DTC). In b...

متن کامل

CRL2LRR-1 E3-Ligase Regulates Proliferation and Progression through Meiosis in the Caenorhabditis elegans Germline

The ubiquitin-proteolytic system controls the stability of proteins in space and time. In this study, using a temperature-sensitive mutant allele of the cul-2 gene, we show that CRL2(LRR-1) (CUL-2 RING E3 ubiquitin-ligase and the Leucine Rich Repeat 1 substrate recognition subunit) acts at multiple levels to control germline development. CRL2(LRR-1) promotes germ cell proliferation by counterac...

متن کامل

Stem cell proliferation versus meiotic fate decision in Caenorhabditis elegans.

The C. elegans germ line has emerged as an important model for -understanding how a stem cell population is maintained throughout the life of the animal while still producing the gametes necessary for propagation of the species. The stem cell population in the adult hermaphrodite is relatively large, with stem cells giving rise to daughters that appear intrinsically equivalent; however, some of...

متن کامل

Caenorhabditis elegans germline patterning requires coordinated development of the somatic gonadal sheath and the germ line.

Interactions between the somatic gonad and the germ line influence the amplification, maintenance, and differentiation of germ cells. In Caenorhabditis elegans, the distal tip cell/germline interaction promotes a mitotic fate and/or inhibits meiosis through GLP-1/Notch signaling. However, GLP-1-mediated signaling alone is not sufficient for a wild-type level of germline proliferation. Here, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current topics in developmental biology

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2006